

PN 6, DN 15-200 seat type: metal body / plastic plate PN 6/10/16, DN 15-200 seat type: metal-to-metal

Application

- Industrial plants and heating systems
- Liquids, gases and steams
- Medium temperature warm-water heating systems DIN 4751
- High temperature hot-water heating systems DIN 4752
- Heat transfer installations DIN 4754 (only PN 6/10/16)
- Contact KSB for limitations imposed by the applicable technical codes.
- · Not suitable for media liable to attack the materials used

Operating data

Temperature range: design PN 6, -30 *) up to 100 °C design PN 6/10/16, -30 *) up to 250 °C *) DN 125-200 (cast iron) -10 °C

- Pressure range: up to $\Delta p = 6$ or 16 bar
- · For further details, see table of working pressures

Materials

- DN 15-100 Body made of brass CuZn39Pb3
- DN 125-200
 Body made of grey cast iron EN-GJL-250 (previously: GG-25)

Design

- · Non-return valve with wafer-type body
- Sealed by spring-loaded plate or cone, guided by guiding pins
- Free from asbestos, PCB and CFC
- Short face-to-face dimension EN 558-1/49 (previously DIN 3202/3 K4)
- Exterior finish:
- Body made of brass, DN 15-100 not painted
- Body made of grey cast iron,
 DN 125-200 similar to blue RAL 5002

The valves meet the safety requirements of the Pressure Equipment Directive 97/23/EC (PED) of annex I for fluids of the group 2.

CERT DIN ISO 9001

Remarks

For the equipment of pressure vessels to TRD 108/110 we recommend flanged non-return valves BOA[®]-R according to type series booklet 7117.1

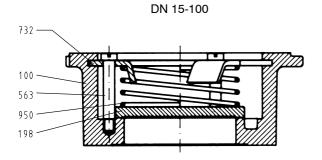
On all enquiries/orders please specify

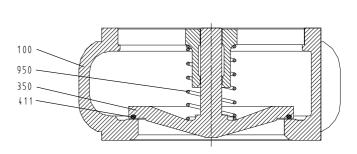
Wafer-type non-return valves

1.BOA®-RVK according to type series booklet 7119.1

2. PN 6 or PN 6/10/16

3.DN 15-200





Working pressures

Nominal	Nominal	Body pressure	Seat tightness	Working pressures in bar at temperatures in °C				
pressure	bore	test with water		3)				
PN	DN	bar ¹)	bar ²)	50	80	100	120	250
6	15-200	9	6	6	4	2	-	-
6/10/16	15-200	24	16	16	16	16	16	13

- 1) DIN 3230-BQ (ISO 5208)
- ²) DIN 3230 part 3, BN 2 (leak rate 2) ³) For intermediate temperatures use linear interpolation.

DN 125-200

Materials

Part-no.	Name of parts	PN	DN	Material		
100	Deate		15-100	CuZn39Pb3	2.0401	
	Body		125-200	EN-GJL-250 (previously: GG-25)	JL 1040	
198	Plate	6	15-100	Plastic PPO-GFK		
		6/10/16	15-100	Stainless steel	1.4301	
350	Cone	6	125-200	EN-GJL-250 (previously: GG-25)	JL 1040	
		6/10/16	125-200	EN-GJL-250 (previously: GG-25)	JL 1040	
411	Gasket	6	125-200	EPDM		
563	Guide pin		15-200	A2		
732	Holder		15-100	Stainless steel	1.4301	
950	Spring		15-200	Stainless steel	1.4571	

Opening pressures (po)

depending on direction of flow

DN	p _o in mbar				
	\leftrightarrow	1	†	† without spring	
15	20	16	24	4	
20	20	16	24	4	
25	20	16	24	4	
32	20	16	24	4	
40	20	15.5	24.5	4,5	
50	20	15	25	5	
65	20	14.5	25.5	5.5	
80	20	13.5	26.5	6.5	
100	20	13.5	26.5	6.5	
125	20		34	14	
150	20		33	13	
200	20		32	12	

Installation instructions

Observe direction of flow and direction arrow.

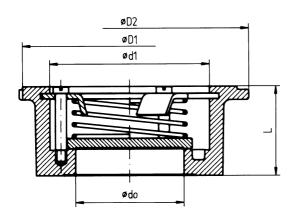
For opening, a minimum pressure is required. If this pressure is not attained, the installed closing spring can be removed. Without closing spring install only in vertical pipe with flow upward.

Connection dimensions - Standards:

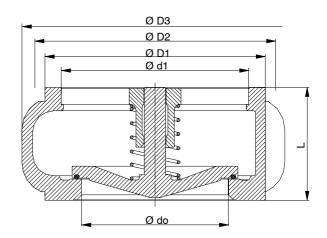
Face-to-face dimension: EN558-1/49

(previously DIN 3202/K4) Flanges:

DIN 2501 PN 6-16


ANSI B 16.1 25/125 BS 4504 PN 6-16

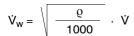
Raised faces: DIN 2526 type C



Dimensions

DN 15-100

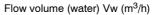
DN 125-200

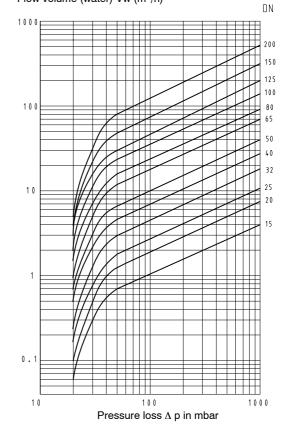

Dimensions (mm)								Weight
PN	DN	L	$\emptyset D_1$	$\emptyset D_2$	$\emptyset D_3$	∅do	Ød1	approx. kg
6/10/16	15	17	43	51	-	15	28	0.15
	20	20	53	61	-	20	33	0.25
	25	23	64	71	-	25	41.5	0.3
	32	28	76	82	-	32	51.5	0.5
	40	31.5	86	92	-	40	58.5	0.65
	50	40	96	108	-	48.5	71.5	0.9
	65	46	116	127	-	63	90	1.2
	80	51	132	142	-	77	110	2.0
	100	61	152	162	-	96	126	2.8
	125	90	184	192	210	118	161	10.0
	150	106	209	218	250	138	186	13.0
	200	140	263	273	273	194	240	22.0

 $ØD_1$ = centring dia. for PN 6

 $ØD_2$ = centring dia. for PN 16

Flow diagram


The readings shown in the chart apply to water at 20 °C. They were measured on valves installed in horizontal pipes. Valves installed in vertical pipes show minor deviations when partially open. To calculate pressure with other fluids, the equivalent water flow must first be determined acc. to the following formula:



 $\dot{V}_w = \text{ equivalent water volume flow m}^3/\text{h}$

 $\varrho = \frac{\text{density of the fluid}}{\text{(operating conditions) kg/m}^3}$

 V = volumetric flow rate of the fluid (operating condition) m³/h

Stainless steel spring, can easily be removed

· Corrosion-resistant,

reliable operation easily adaptable to

operating conditions

if necessary Your benefit

Product Features - to our Customers' Benefit

Compact design short face-to-face length

Your benefit

- · Low weight
- Space-saving storage
- Easy to install
- BOA®-RVK helps to reduce construction volume and weight of the system

Favourably-priced valve

Centring aid part of the body

Installation in any position

· Easy plant engineering

Your benefit

(with installed spring)

Your benefit

- · Easy, quick assembly
- Cannot be lost

Three guide pins for precise guidance of sealing plate

Your benefit

- Reliable operation
- No blocking of plate

Standard design can be installed between flanges to DIN 2501 PN 6-16 ANSI B 16.1 25/125 BS 4504 PN 16

Your benefit

· easy stockkeeping

Your benefit
• corrosion-proof, reliable sealing

Sealing plate/cone made of plastic on design PN 6, DN 15-200

Your benefit

 reliable sealing, reduced closing noise

Low pressure drop

Your benefit

· reduced operating costs

